UNDERSTANDING THE IMPLICATIONS OF INTELLECTUAL PROPERTY RIGHTS AND PLANT VARIETY PROTECTION ON DEVELOPMENT OF TRANSGENIC VARIETIES AND RELATED BIOLOGICAL MATERIALS

S.R.Rao Advisor, Department of Biotechnology, Ministry of science and Technology, Government of India E mail : srrao@dbt.nic.in ILSI workshop on Detection methods ---crops November 17th 2011

Technologies

DNA Markers Automation BAC & YAC libraries EST databases Reverse genetics DNA chips Fingerprinting Genetic mapping Gene isolation Comparative mapping Gene pyramiding

Applications

New Products

Elite germplasm Breeding populations Germplasm bank Wild relatives Landraces Transgenics

Germplasm

Today Of Transgenic Research in India

Crops 36	Traits 18
Research Institutions Companies engaged	
Universities	50
Research Institutions	45
Companies	140
Total	235

Acts Linked to GM technology ,plant varieties and seeds

The Patent Act for some aspects of GM technology, genes and molecules.

The Environment Protection Act. GEAC clearance for transgenic.

The Biodiversity Act for bio-prospecting natural resources

The Seed Act. Seed purity, health, import export, labeling and marketing.

The Protection of Plant varieties and Farmers' Rights Act.

Developments that influence plant breeding.

CBD

- Conservation
- Sustainable Use
- Access and Benefit Sharing

ITPGRFA

Multilateral Exchange of PGRFA

Cartegena Protocol

Biosafety Issues

Biological Diversity Act, 2002

WTO

- Trade Related Intellectual Property Rights
- Mandatory requirement for protection for plant varieties

UPO

Geographical Appellations Act,

Protection of Plant Varieties & Farmers

Rights Act, 2001

Patents (Amendment) Act, 2002 International Plant Protection Convention

Seed Bill

Plant variety registration

Intellectual Property Protection: Bt Maize: an Example

Gene ownership

Cry1F PAT marker gene

Enabling technologies

Micro projectile bombardment Herbicide selection Backcrossing Production of fertile transgenic

Enhanced expression

- Chimeric genes
- using viral promoters
- Enhanced expression
- Enhanced transcription
- efficiency
- Selective Gene expression
- Elite maize inbreds and hybrids

What transgenic can be registered?

- Extant variety
- ► New Variety
- Essentially Derived Variety

What can be an EDV?

- Back cross derivative
- Deletion / Addition lines
- Chimera / extra nuclear variations
- Point mutation
- Ploidy changes
- ✓ A gene insertion.
- Somaclonal variation
- Predominantly derived from the initial parent
- Shared parentage (?)

- **EDV** will have five categories
- -Transgenic
- -Mutant
- -Tissue culture derived
- -Back cross derivatives
- -Others (Ploidy change)

What is needed for registration

✓ Section 18 of the Act. Genetic material/ parental are lawfully acquired.

✓ Geographic location in India from where the material is acquired.

✓ Sworn affidavit that the variety does not contain any gene sequence involving terminator technology.

✓ As contained in section 19, seeds of such variety along with parental lines confirming to the standards.... Will be submitted.

➢For Transgenic Varieties a copy of GEAC approval will be required.

>Approval for bio-safety clearance from Ministry of Environment and permission for commercial seed production will be required.

➢ If required, special test in the laboratories will be conducted for establishing the distinctiveness of the EDV.The varieties developed through biotechnological research requires complicated screening techniques to established its distinctiveness over other variety putting pressure for establishment of high profile and well advanced laboratories

➢No variety shall be registered if it contains any technology including GERT and Terminator Technology which is injurious to the plant health.

>The special test shall be conducted only, when DUS tests fails to establish the requirements of distinctiveness.

For Discussion

Challenge 1

One gene in so many hybrids/ varieties / genera

What is different and distinctive

Gene or germplasm

We may end up in protecting all commercially important varieties/hybrids just by back cross breeding

Costs of PVP/EDV may add to seed cost borne by farmer

The varieties developed through genetic engineering technique are also used in conventional plant breeding raising implications for the ownership of varieties for such a research for example pyramiding genes (derived non transgenic)

Challenge 3 : Add gene for new EDV in already registered EDV

some countries require bio-safety analysis for each new transgenic variety event if the variety is based on previously approved event since such testing, sufficient funds is required, to meet the cost of the testing.

In India approved event based new trasgenic simple approval process

Challenge 4: Dilemma of scientists

➢For Transgenic Varieties a copy of GEAC approval will be required.

>Approval for bio-safety clearance from Ministry of Environment and permission for commercial seed production will be required.

Here comes

Dilemma of scientists

who develops a breeding transgenic line with proof of concept not essentially commercial so does not have GEAC approval

The varieties developed through genetic engineering technique are also used in conventional plant breeding raising implications for the ownership of varieties for such a research.

Agriculture

Okra

Insect resistance

Cotton

G.

Rice

n Maize

Cabbage Cauliflower

Delay ripening of fruits

Golden Rice with Provitamin A for malnutrition

Patent and License agreements

Flow chart of Tangible Property Transfers for one of the three constructs (source: Kryder, Kowalski and Krattiger, 2000)

Challenge 6: Harmonizing with patent Act

Intellectual Property Protection: Bt Maize: an Example

- Gene ownership
 - Cry1F PAT marker gene

Enabling technologies

Micro projectile bombardment Herbicide selection Backcrossing Production of fertile transgenic

- Enhanced expression
 - Chimeric genes
 - using viral promoters
 - Enhanced expression
 - Enhanced transcription
 - efficiency
 - Selective Gene expression
- Elite maize inbreds and hybrids

Rice Transformation patents in the top ten Riceproducing countries

Dilemma : Section 18 of the Act. Genetic material/ parental are lawfully acquired

Technology transfer mechanisms in agricultural biotechnologies

Commercial

- **Purchase of technology (seed variety/planting material)**
- Licensing with royalty payments of tools /Product/ process(eg;seeds, diagnostic kits, mapping techniques)
- Trade secrets (inbred, parental lines)
- Joint ventures, Collaborative research, Bio-processing agreements
- Material transfer agreements
 - **NON commercial Training and technical cooperation**
- Collaborative Research
- Material transfer agreements
- Technology" donations"
- Seed exchange among farmers

Dilemma : Section 18 of the Act. Genetic material/ parental are lawfully acquired

NARO study. In 1998, ISNAR conducted a survey among NAROs in Brazil, Chile, Colombia,Costa Rica, and Mexico and India .

Lacked formal written agreements or information was not available (35 percent).

MTAs accounted for 25 percent of acquisitions, being the most common means,

Does It mean an MTA for R&D or commercializatio n .are there standards

Future Challenges

The technology is progressing rapidly, building upon the

Food & Nutrition

Taste

Sensorv quality: Improved taste, texture and appearance (proteins, lipids, carbohydrates)

Nutrition

Micronutrients Bio-availability and preservation of vitamins & minerals: Iron, Folic Acid, Vitamins A, C, E

Fiber content

Protein

Quantity, composition and quality Amino acids methionine, lysine, tryptophan

Vegetable oils

- Nutritional quality, cooking stability, shelf life
- Low saturated fats
- High oleic acid
- Increased stearate Increased laurate
- Essential fatty acids (PUFA balance)

Carbohydrates / Starch

Resistant starch - slowly digested to improve colonic health, generation of short chain FA, slow energy release for diabetics and athletes Increased starch potatoes (reduce oil absorption during processing Fructan producing sugar beets (sweetness equal to sucrose without the calories)

Probiotics

Gastro intestinal health: colonic microflora Lactobacillus and Bifidobacterium stimulate mucosal immune system, increase resistance to food borne illness & chronic disease

Phytochemicals

Disease prevention (cardiovascular, cancer, diabetes, obesity, osteoporosis, arthritis) Bioactive peptides Isoflavones Phytosterols Anti-oxidants: flavanol, lycopene, tocopherol

Shelf life

Controlled plant ripening and post harvest shelf life Enhanced package goods shelf life eg Bread Reduce browning from bruising, polypheno oxidase

Allergens and Safety

Reduced allergens: Glycoalkaloids, trypsin inhibitors, cyanogenic glycosides, proteins Reduced Mycotoxin: Fumonisin, Aflatoxin Detection methods for pathogens, toxins

Bio-Processing

Food Enzymes

Raw material conversion:

- Enzymes in food production with higher purity & specificity: chymosin, lactase, alpha-amylase, amyloglucosidase, aceto lactate ecarboxylase, xylanase, lipase, meniculllases, cyclomaltodextrin glycoslytransferase.
- Conversion of plant or animal raw material substrates into foods (e.g. cheese, bread. beer).
- Bacteriocin preservatives / peptide antimicrobials (e.g. Nisin)

Food Processing

Improved processing

Increased yield, quality, consistency Optimized cost Reduced food loss / waste

Improved food ingredients

Organic acids: Lactic, citric, gluconic, proprionic Amino acids: lysine, methionine, tocopherol Vitamins Gums Sucrose Non nutritive and semi-nutritive sweeteners Processed starch products e.g. maltodextrins, oligosaccharides, sugars, high fructose corn syrups for health Carbohydrates such as arabinogalactans and inulins for prebiotic improved colonic microflora. Pectin processing yield and cooking properties

Industrial Processing

Bio-energy production Ethanol

- Lubricants Liquid Wax
- Waste water treatment
- **Bio-catalysts**
- **Detergent proteases**
- **Bio-polymers**
- **Specialty Chemicals**
- Fibers Modified lignin from pulp Silk Cotton

Medicine

Therapeutics

New Drugs

- Influenza vaccine
- AIDS treatment **Blood pressure**
- Heart disease
- Cancer
- Multiple sclerosis
- Psoriasis

Manufacture complex proteins

Abundant, cost effective production of therapeutic proteins with improved safety and specificity. Eg Hirudin

Efficient drug delivery vehicle

- Edible vaccines for the management of:
 - Dental caries Gastroenteritis virus
 - Hepatitis B
- Measles
- Genital herpes
- Rotavirus
- Enterogenic Escherichia coli
- Norwalk virsus
- Pseudomonas.
- Staphylococcus
- non Hodgkin's B-cell lymphoma
- Insulin-dependent diabetes mellitus (IDDM), an auto immune disease

Drug Discovery

Bio-active molecules Mode of action

Novel chemistry

Natural products

Identification and synthesis of phytochemicals from plants with medicinal and cosmetic properties.

Diagnostics

Nutri-genomics

Personal nutrition screening

Allergen sensitivity testing, prevention and treatment

Crop Production

Crop Yield

Output: grain and biomass

Photosynthesis, enzymatic regulation, plant structure, flowering, ripening, sprouting

Grain quality - Composition specifications and grade

Selective breeding - Reducing the time it takes to develop improved crops

Abiotic stress tolerance:

Increase the ability of crops to grow in a geography by increasing tolerance to: Moisture and Drought Heat and Cold Saline Heavy Metals Al, Se, Mn and Ozone

Pest Management

Disease resistance

Fungus: verticillium, fusarium, sclerotinia, grey mould, botryrtis, powdery mildew, black sigatoka
Bacteria: bacterial blight
Virus: BYDV, mosaics, leaf curl, spotted wilt, ring spot, feathery mottle, necrotic yellow vein viruses

Insect & Nematode resistance

Foliar, Root, Fruit, Grain
 Sucking, Chewing, Piercing

Herbicide tolerance More environmentally benign e.g. Glyphosate, Alternate mode of action e.g. IMI, SU, Glufosinate

Bio-pesticides

Environment

Decrease pesticides - Substitute chemicals for gene traits

Improve production practices Reduced soil erosion, Improved ground and surface water, Less fuel, Less land

Reduce fertilizer dependence

Improved plant extraction, transport and utilization decreases demand for synthetic fertilizers (Nitrogen, Phosphorus, Potash)

Increase plant biodiversity

Expand crop gene pool and reduce risk of crop failures. 80,000 species of edible plants, cultivate 300, 12 are food staples.

Animal Production

Livestock Performance

Feed to gain improvements:

- High density, more completely balanced feed resulting in more meat per ton of feed

- Protein quantity and quality
- Oil (caloric energy)
- Amino acids Fatty acids
- Fatty acids
 Starch
- Carbohvdrate
- Vitamin and mineral composition
- Antioxidants
- Improved performance of growth factors and hormones to increase food yield

Feed digestibility

- Derive greater nutritional value from feed
- Ruminant animals (corn silage lignin)
- Increase oligosaccharides to reduce non-digestable compounds is soybeans (stachyose, galactose, raffinose)
- Reducing phytate content for increased bioavailability of amino acids, chelation of mineral ions for less P & N waste

Carcass quality

- Meat composition: efficient delivery of micro / macro nutrients in human diet
- Meat texture, appearance, taste
- Protein, Oil and Amino Acids
 Vitamin and mineral composition
- Vitamin and mineral co
 Antioxidants

Animal Health

Animal fertility and genetics

Plant based animal vaccines - Gastroenteritis virus

Pathogen resistance

- Reduced infestations from infectious disease that are human health risks eg Salmonella

Aquaculture

Sustainable production

Salomon Talapia

Taiapia Trout

Flounder

Catfish Shrimp

other arguments.....

Gazette notification is for a species for registration.

In intergeneric crosses female parent species is taken as basis for DUS.

Should novelty then be a character available within a species or genera or can be anything?

Should distinctness be as a consequence of the given species gene pool or can be due to genes from across the genetic barrier.

The promoter, expression system and the trait of value are all from outside the notified genome. So what is registered?

Trans Gene escape.....?

Can it be pleaded as innocent infringement.

Or can neighbor challenge for compensation for reasons of contamination.

Who owns the guilt, the adjacent farmer or the technology supplier.

What does section 39 (2) expected performance under a given condition mean.

Burden of Proof and Cost of Law

➤The transgenic infringement etc are to be defended by innocent small players and the related tendencies are of concern to all.

➤At times of need DNA finger printing may have to be resorted to. So small players are to generate costly molecular data to defend themselves in the eyes of law.

The cost of the law incurred by plant breeders will add to seed cost which will be passed on to the farmers

Private character of biotechnology A CONCERN

In **1979** there were **7000** public and private seed institution.s. Not even one company occupied significant percentage of global commercial seed market. Today **10** companies control in excess of **1/3** of global commercial **seed market**.

•In the late **1970s**, there were **65** companies that were inventing and marketing **crop chemicals**-- herbicides, insecticides, nematicides and so on . Now we're down to **nine** companies that make up about **91** percent of the global market.

My personal views

➢ Transgenic research is expensive so protection of some sort is essential to recover costs through technology fees etc − biosafety and PVP processes should be cost effective

≻Adding a gene or two does not mean creation new germplasm- there EDV for transgenic is preferred option than PV- in such case applicants may file a PV for Original Line and EDV for transgenic line

➢ Back crossed based applications for EDV from approved event may glut the markets with EDVs in different backgrounds (hydrids/genera) although gene is same –EDV for trangenic may be given only if applicant is established original breeder/owner.

My personal views.....

Pyramiding is continuous process –an EDV over another EDV would be carefully thought of for registration

➢Biosafety regulations should also consider breeding lines of proof of concept to help technologist supplying such lines for backcrossing in commercial lines –PVP can follow to solve scientist dilemma – this would accelerate technology development and transfer

≻Clearance certificates or Freedom to Operate from all patents realted to gene technologies employed is should be prerequisite for PVP to harmonize with Patent act. My personal views.....

➤Community Rights as per CBD should be settled in case of land races or farmer varieties used for transgenic development

➤Capacity building for executing MTAs/ agreements and evolving standard formats checklists would help

➢ Regular dialogue is necessary to address future developments transgenic research and its relation to biosafety and PVP/FR and Patent Act/ Biodiversity issues

Thanks for this opportunity